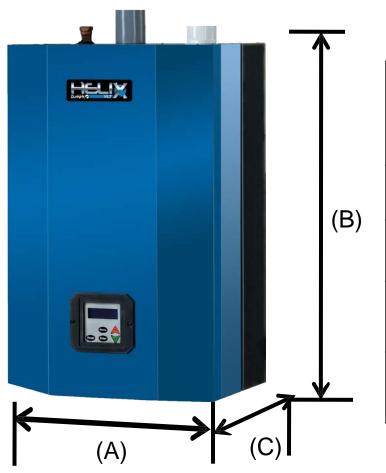


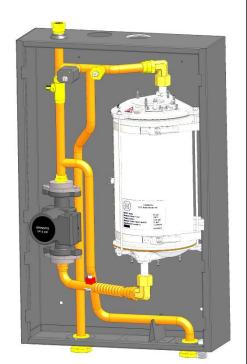
VLT Technical Training

Ratings & Capacities

Capacities BTUH	50,000	75,000	100,000	150,000	200,000	299,000
Modulation with 5 to 1 turndown	50,000 10,000	75,000 15,000	100,000 20,000	150,000 30,000	200,000 40,000	299,000 60,000
Nat or LP	LP conversion kits are shipped with every boiler					
AFUE	95	95	95	95	94	94
Water Connections	1-1/4"	1-1/4"	1-1/4"	1-1/4"	1-1/4"	1-1/4"



Dimensions/Weights


Model Size	50,000 75,000 100,000	150,000 200,000	299,000
Width (A)	20"	23"	23"
Height (B)	30"	40"	40"
Depth (C)	14"	16	→ 18.3"
Boiler Weights	<u>91 lb</u>	<u>157 lb</u>	<u>195 lb</u>

Features-All Sizes

- Vertical Stainless Steel Coil Heat Exchanger
- Probe-type low water cut-off
- Specialized flue collector designs
- Argus vision control
- Built-in Primary/Secondary Piping

Built In Pump & Piping

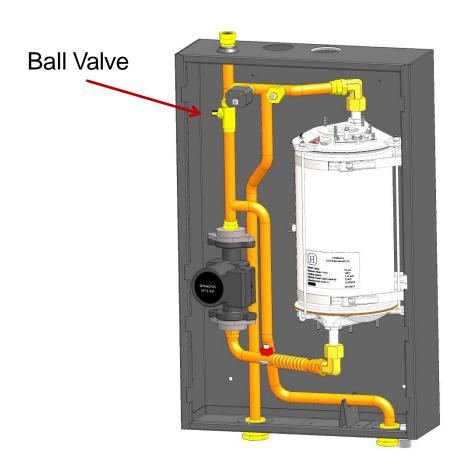
- Factory installed
- •Low pressure drop (less than ½ psi) across the boiler's supply and return connections
- HydraulicallySeparates boilerfrom the system
- •A ball valve is located between the internal tees.

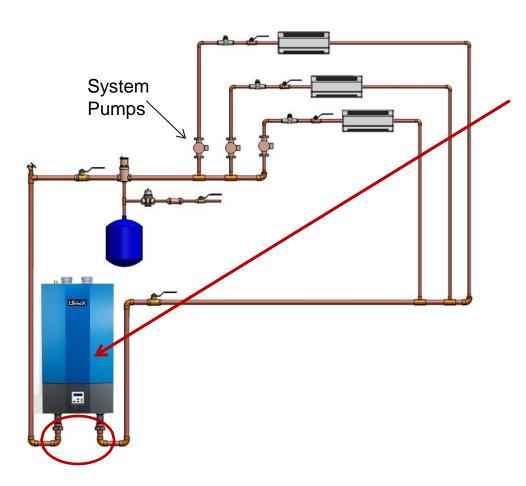
Benefits

Saves the installer material and labor.

No need to purchase a costly high head pump. Easy to connect to existing systems without extensive re-piping.

Ensures proper flow through the boiler's heat exchanger regardless of how many system zones are open or closed.


Increases the boiler's piping options when the existing system already has a set of closely spaced tees or when installing a new multiple boiler system.


Innovative. Efficient. Dependable. Dunkirk.

Internal Piping

- Primary Secondary can be either internal to boiler or external to already existing closely spaced tee's!
- Saves both time and money on install
- Note: System requires at least one secondary circulator.

Built In Pump & Piping

- Primary/Secondary Piping and Pump
- Factory installed inside the boiler.
- The internal pump provides the correct amount of water flow through the heat exchanger.
- The pressure drop across the boiler's supply and return line is negligible the boiler is not adding resistance to the system piping.

Selling Installed Value

VLT Contractor Challenge

- •Targeted Contractors who sell competitors MODCONs.
- •When we compare price to price we are often equal, sometimes higher.
- •When the filled out the Scorecard we found to be from \$343 to \$1700 LESS!!

Dunkirk ? **Dunkirk VLT Contractor Challenge Scorecard** Competitive Condensing Boiler Manufacturer and Mode Material Labor Labor Cost Description Total Cost (Material Cost Hours per Hour abor Cost Item Labor) Burnhay Alpine ALPOSO 1000 Cost of Competitive 4.00 125 2680 3680 Boiler Cost to purchase all piping, fittings, valves and materials to construct the P/S loop. Include the time, number of technicians and fully Primary/ Secondar 1.25 575 200 3.0 Piping Primary Pump (if 302.50 .5 125 cost of primary pump and labor to install not included) 6250 Code Compliant 187.50 .5 125 Cost of probe type LWCO LWCO (if applicable) Electrician/Labor to install and wire Cost of labor or sub-contracted electrician to wire and install LWCO LWCO Wall Bracket Total labor time required for installation start to finish (number of **Productivity Rating** technicians x hours to complete) HOT SALE PRICE TOTAL COST: VLT Scorecard VLT Material Labor abor Cost Description Total Cost (Material Total Labor Cost Labor) 1025 1000 **VLT Cost** 3300 8.00 Cost to purchase all piping, fittings, valves and materials to construct Primary/ Secondar the P/S loop. Include the time, number of technicians and fully 0 0 0 0 0 Primary Pump (if 0 Cost of primary pump and labor to install 0 not included) 0 Code Compliant 0 0 0 Cost of probe type LWCO LWCO (if applicable 0 Electrician/Labor to nstall and wire 0 0 0 Cost of labor or sub-contracted electrician to wire and install LWCO 0 LWCO 0 0 Wall Bracket 125 8.00 1000 Total labor time required for installation start to finish (number of 3300 **Productivity Rating** 1000 technicians x hours to complete) MOT SALE PRICE - Total Cost:

Contractor Challenge

VLT vs Burnham

\$ 345.00

Competitor Scorecard Competitive Condensing Boiler Manufacturer and Model vitodens 200 Material Labor Labor Cost Total Labor Total Cost (Material + Description Cost Hours per Hour Cost Item Labor) Cost of Competitive 4,929 4929 Boiler Cost to purchase all piping, fittings, valves and materials to construct Primary/ Secondary 200 4 \$100 \$600 the P/S loop. Include the time, number of technicians and fully Piping 600 burdened labor rate to install. Primary Pump (if not 150 1 150 Cost of primary pump and labor to install included) 150 Code Compliant LWCO (if Cost of probe type LWCO applicable) Electrician/Labor to Cost of labor or sub-contracted electrician to wire and install LWCO install and wire LWCO Wall Bracket Total labor time required for installation start to finish (number of Productivity Rating technicians x hours to complete) 3,000 2@15 100 1500 Total Cost: 8,679 **VLTScorecard** VLT_{VLT 200} Labor Cost Total Labor Total Cost (Material + Description Material Cost Labor Hours perHour Cost Labor) Item VLTCost 4,270 4.270 Cost to purchase all piping, fittings, valves and materials to construct Primary/ Secondary \$0 the P/S loop. Include the time, number of technicians and fully Piping burdened labor rate to install. Primary Pump (if not 0 Cost of primary pump and labor to install included) Code Compliant LWCO (if Cost of probe type LWCO applicable) 0 Electrician/Labor to 0 Cost of labor or sub-contracted electrician to wire and install LWCO install and wire LWCO Wall Bracket 0 Total labor time required for installation start to finish (number of Productivity Rating technicians x hours to complete) 2.000 2@10 100 2,000

Contractor Challenge

VLT vs. Viessman

\$ 2,409.00

Total Cost:

6.270

Competitive Condensing Boiler Weil Ultra Manufacturer and Model Labor Cost per Description Material Cost Labor Hours Total LaborCost Total Cost (Material + Labor) \$3,300 \$90.00 \$1,440 \$4,740 16 Cost of Competitive Boiler Cost to purchase all piping, fittings, valves and materials to construct the P/S loop 1 \$90.00 \$90 Primary/Secondary Piping \$400 include the time, number of technicians and fullyburdened labor rate to install. \$490 1 \$200 Primary Pump (if not included) \$90.00 \$90 Cost of primary pump and labor toinstall \$290 Code CompliantLWCO (if Cost of probe type LWCO applicable) \$100 2 \$90.00 \$180 \$280 Electrician/Labor to install and 1 \$90.00 \$90 Cost of Jahor or sub-contracted electrician to wire and install I WCO wire LWCO \$100 \$190 3 Wall Bracket \$100 \$90.00 \$270 \$370 Total labor time required for installation start to finish (number of technicians x hours Productivity Rating to complete) 8 Total Cost \$6,360 **VLT Scorecard** Total Cost (Material + Labor Cost per Description Material Cost Labor Hours Total LaborCost Labor) Item VLT Cost \$2,700 \$90 \$1.440 \$4,140 16 Cost to purchase all piping, fittings, valves and materials to construct the P/S loop. Primary/ SecondaryPiping 0 \$0 Include the time, number of technicians and fully burdened labor rate to install. 0 0 0 Primary Pump (if not included) Cost of primary pump and labor to install Code CompliantLWCO (if applicable) 0 0 0 0 0 Electrician/Labor to install and Cost of labor or sub-contracted electrician to wire and install LWCO wire LWCO 0 0 0 0 0 Wall Bracket 0 0 0 0 0 Total labor time required for installation start to finish (number of technicians x hours Productivity Rating 0 0 0 0 to complete) \$4,140

Contractor Challenge

VLT vs. Weil Mclain

\$ 2,200.00

Selling Installed Valued

Contractor Testimonial

"We went form two men, two days to two men one day!" "We are still quoting and getting jobs with 2 men/2 days but are much more profitable, and competitive with the VLT and H2O"

Vertical Helix Coil – Self Cleaning

- •Stainless Steel Coil 316L with 444 fins that are laser welded to the coil.
- ASME "H" stamp with 150 MAWP
- Exclusive to ECR. Developed in our research facility located in Utica, NY

Benefits

Waterways are wide and smooth with a helix coil that expands and contracts to inhibit hard water scaling. The vertical design coil prevents debris from settling in the heat exchanger. Condensate flowing over the fins continually "washes" the combustion side

The stainless steel is resistant to the effects of acidic condensate. The laser welding process ensures the highest level of heat transfer and efficiency

H Stamped, ASME heat exchanger designed, assembled and independently audited in our Utica NY facility.

Innovative. Efficient. Dependable. Dunkirk.

- •316L/444 Stainless Steel Coil
- •Wide open design
- •No high head pump required
- Self cleaning action
- •We live up to our claim

299 Series

The VLT – Vertical mounted, Laser welded fin Tube

316L stainless steel tubing has 444 fins laser welded onto the tubing. 444 fins are used due to their high heat transfer and high corrosion resistance in the combustion area.

Tubing Diameter

The larger diameter tubing and round shape optimize water flow through the heat exchanger.

Positioning / Self Cleaning

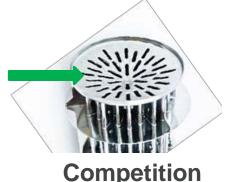
The vertical positioning of the coil heat exchanger and open fin spacing allows the heat exchanger to drain off any combustion particles. The natural flexing of the coil during operation reduces scale buildup

Self cleaning – both water and flue gas sides

Heat Exchanger

VLT Coil

VLT round shape with a larger diameter coil for better water flow and reduced scaling



Vertically positioned to drain away any debris and scale - self cleaning. Open flueways between the coils.

Heat Exchanger

Vertically Positioned - yes Self Cleaning – (see below) Stainless Construction – yes

VLT Coil

Water Tube – Single piece coil Self Cleaning

Flue Gas Side - Yes

Water Side – **Yes** - water flow velocity is maintained preventing debris from settling. The natural flexing of the coil (during operation) reduces scale buildup

15 year HX warranty 5:1 turndown

95% AFUE

94% AFUE (200/299 sizes)

Fire Tube – multiple tubes with welded connections potential stress and leak points

Self Cleaning

Flue Gas Side - Yes

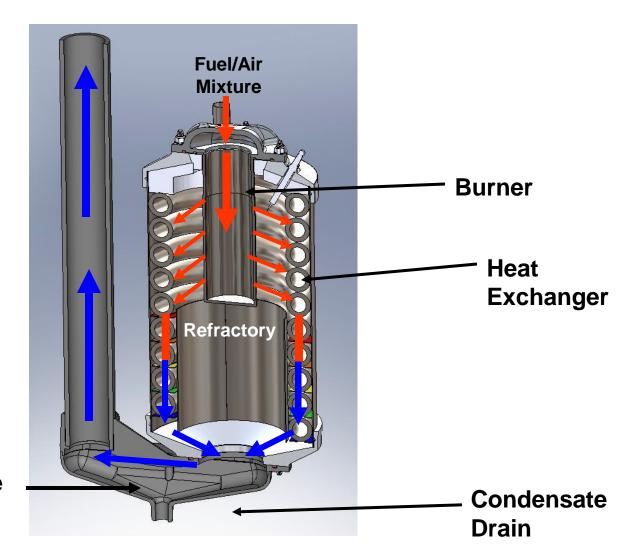
Water Side – Water flow velocity is reduced allowing debris to settle inside the heat exchanger

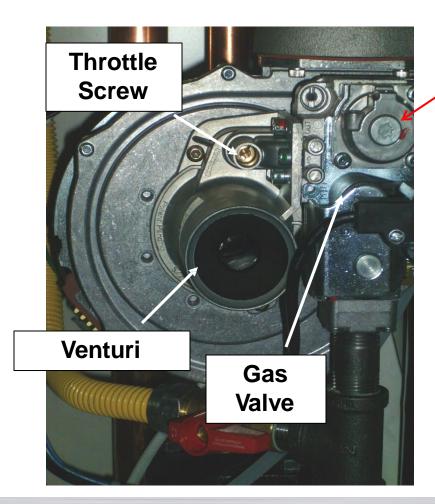
10 year HX warranty

3.7:1 or 5:1 turndown – depending on manufacture 95% AFUE

Gas Burner

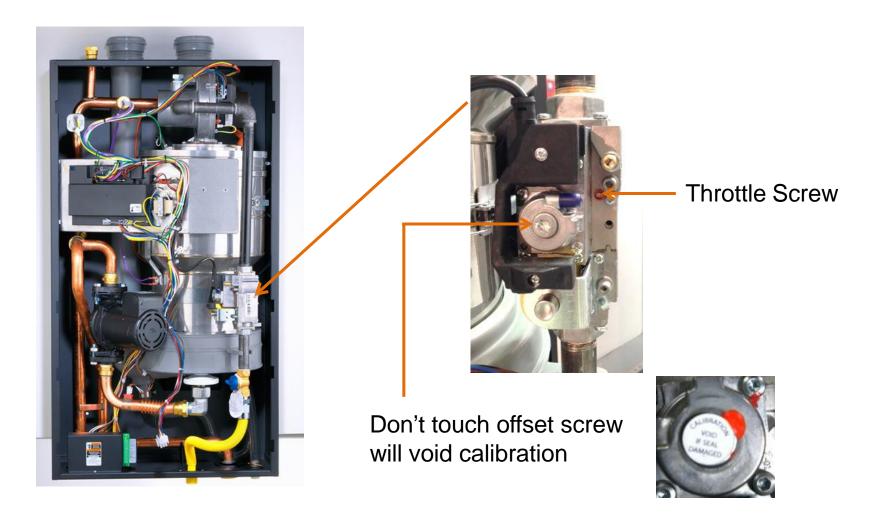
- Worgas[™] designed gas burner for the unit
- Natural / propane
- Easy removal for field inspection
- Easy removal for maintenance to heat exchanger


Note: Burner is keyed to heat exchanger. Line up notch in heat exchanger casting.


Combustion Path

CPVC Flue Collector

Gas Valve 50-200 Models



Don't touch offset screw will void valve's calibration

- 120 volt gas valve system
- Venturi system takes air from within the sealed cabinet
- Adjust throttle screw for proper gas / air CO² setting

Gas Valve-299 Model

Probe-Type Low Water Cutoff

Low Water Cutoff

- Protects the boiler.
- Factory installed.
- Probe style.
- Test button feature with indicator lights.

Benefits

Prevents boiler operation without the proper water level.

Saves the installer material and labor. Most States now require a boiler to have a low water cutoff.

Reliably operates off of the water level in the boiler and not a pressure or flow sensing device. This is not a surface mounted sensor.

Easy to test and verify the LWCO is operating properly.

Condensate Collector 50-200 models

Specialized Flue Collector

Schedule 40 CPVC (Changing to Polypropylene)

Exceptional resistance to the effects of acidic condensate.

Will not corrode over the life of the boiler.

Saves the installer material and labor.

Condensate Collector 299 Model

Benefits

Polypropylene – High temperature rating.

Exceptional resistance to the effects of acidic condensate.

Will not corrode over the life of the boiler.

Flue Gas sample port built in.

Condensate Drain

- Drain is ¾" PVC NPT.
- Internal trap built into boiler drain.
- Fill trap with water prior to start of boiler.
- Contractor is required to run a drain off boiler.

Built-in Trap

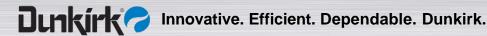
Control Package ARGUS™ Vision

ARGUS™ Control EASY TO PROGRAM EASY TO UNDERSTAND

Same Control on 50-299 models!

Installation

Combustible Clearances

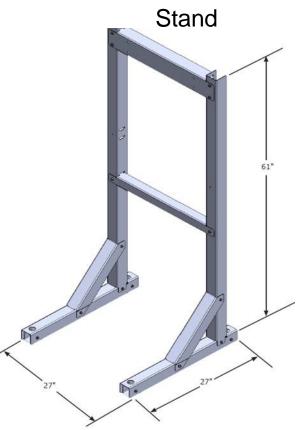

Boiler Clearances					
Dimension	Combustible Materials (1)	Service (1) (2)			
Model	050/075/100/ 150/200/299	050/075/100/ 150/200/299			
Тор	0" (0 cm)	14" (36 cm)			
Left Side	0" (0 cm)	0" (0 cm)			
Right Side	0" (0 cm)	0" (0 cm)			
Front	0" (0 cm)	6" (16 cm)			
Back	0" (0 cm)	0" (0 cm)			
Bottom	0" (0 cm)	12" (32 cm)			
Combustion Air/Vent Piping	0" (0 cm)	6" (16 cm)			
Hot Water Piping	1/2" (1.3 cm)	6" (16 cm)			

⁽²⁾ Service, proper operation clearance recommendation.

Locating The Boiler

- Access to outdoors to meet minimum and maximum pipe lengths
- Disposal of condensate
- Drainage of water or anti-freeze during service or from safety relief valve piping
- Access to system water, gas piping and electrical service
- Ambient room location above 32° F
- Approved for installation in a closet
- Protect boiler from any external water or moisture that could damage the electrical or combustion controls

Hanging the Boiler


Rear of Boiler

Wall Mounting Bracket & Hardware

NEW! Optional Floor

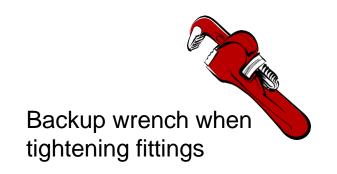
Wall Mount Bracket and Hardware Included

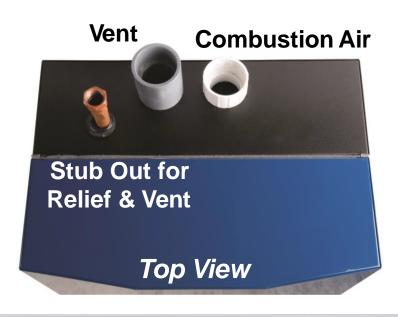
Note: For Multiple Boiler Applications - Boilers can be placed side by side or back to back

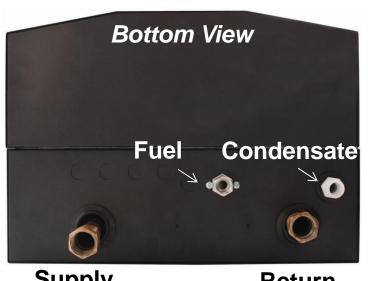
Innovative. Efficient. Dependable. Dunkirk.

Floor Stand Features Include:

- Powder Coated Black Paint with a textured finish to match the boiler back panel. The paint process provides a durable rust resistant finish.
- One size floor stand fits the entire VLT condensing family from 50 through 299 mbh.
- The stand is shipped in a knockdown configuration for ease of handling and transport. The stand can be quickly assembled at the jobsite in just a few minutes.


Floor Stand Option





Boiler Connections

- Bottom Supply and Return 1-1/4" NPT
- Fuel Inlet ½" NPT
- Condensate Drain ¾" NPT
- Combustion Air & Vent 2" PVC
- 3/4" NPT Stub out on top for field installation of Safety Relief & Air Vent (included with Boiler)

Top Trim-Relief Valve / Air Vent

Rated up to 150 MAWP

- Factory supplied 30 psig relief valve
- Install safety relief valve and air vent using pipe fittings provided with the boiler
- Install ¾" or larger discharge pipe to floor
- Install relief valve with spindle in vertical position only
- Do not install shutoff valve between boiler and safety relief valve
- Field Installed pipe relief valve to within 6" of floor

Trimming the Boiler

Included with every Boiler is a complete Trim kit!

No need to purchase anything additional.

Bottom Trim-T\P Gauge & Drain

On the water side, the only thing left to connect is your Supply & Return!

Gas Piping

- Gas piping needs to be in accordance with all national and local codes
- Flexible gas line piping and gas shut off inside of boiler
- Always check gas piping and connections for leaks

1/2" NPT Gas Connection 50/75/100
3/4" NPT Gas Connection 150/200/299
Use a backup wrench when tightening

Gas Piping

- Service shut off valve inside boiler
- Shut off valve still required <u>external</u> of the boiler

Gas Pressures

Gas Supply Pressure				
Capacities BTUH	Natural Gas		Propane	
	Min.	Max.	Min.	Max.
50,000 - 299,000	*3.0" w.c. (0.7kPa)	13.5" w.c. (3.3 kPa)	5.0" w.c. (1.2 kPa)	13.5" w.c. (3.4 kPa)

^{*}Minimum gas pressure requirement of 3" w.c. – excellent for metropolitan areas with low gas pressure from the utility.

LP Gas Conversion

- All boilers shipped as Nat Gas. LP Kit included.
- Propane orifice conversion from natural gas in less than 5 minutes.
- Orifice to be installed for propane gas fired units
- Propane gas supply inlet pressures: 5" w.c. minimum, 13.5" w.c. maximum

Propane orifice location 50-200

LP Gas Conversion

Propane orifice - 299

Electrical Connections Line Voltage

- Wiring connections located inside, bottom left
- Incoming 120 volt
- Central heating circulator pump
- Domestic hot water circulator pump

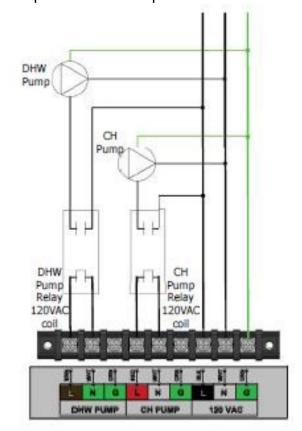
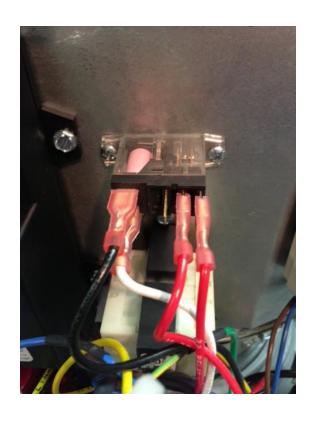

Electrical Connections Line Voltage

Table 11 - Maximum Allowable Current Draw

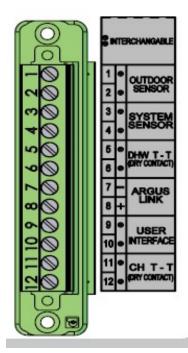

МВН	CH PUMP	DHW PUMP	NOTE
50 75 100 150 200	1 A	1 A	Powered by Control Board
299	10 A	10 A	Powered by installed 10 Amp relay

If CH or DHW pump current is more than the maximum allowable current draw install proper field sourced relays as shown in figure 8-3.

Figure 8-3 Isolation Relays for CH System Pump and DHW Pump

Pump Relay

Built-in Pump Relay is provided on the 299 model.


Pending Change - 150 & 200 models will also incorporate the pump relay.

Electrical Connections Low Voltage

Low voltage terminal strip located inside boiler

Connections

- User Interface
- •ARGUS™ Link
- Sensors
- •TT DHW / CH
- Removable for easy wiring

299

USER

ARGUS

LINK

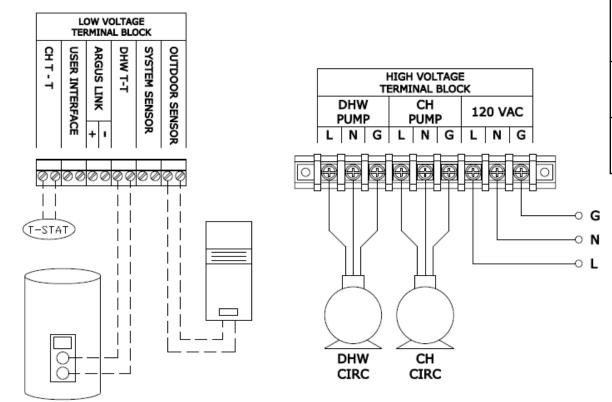
OUTDOOR SENSOR SYSTEM SENSOR

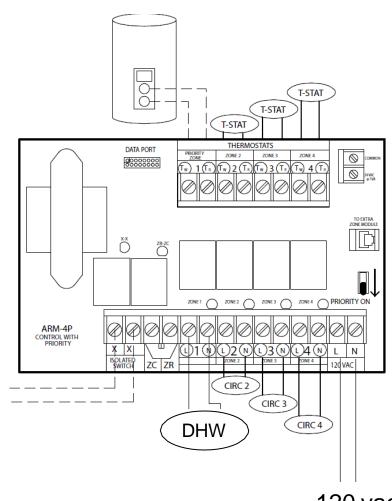
DHW T-T

NOT USED

One Zone Heat or One Zone Heat & Indirect

All the Wiring Will Be On Boiler




Table 11 – Maximum Allowable Current Draw

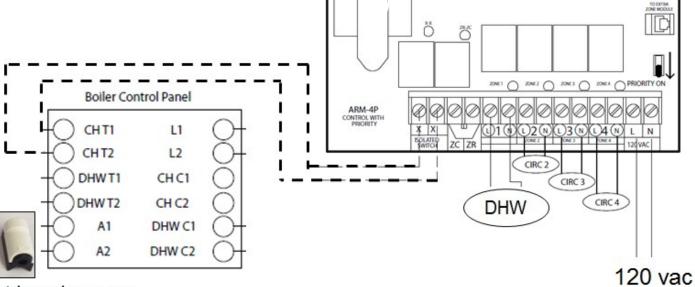
МВН	CH PUMP	DHW PUMP	NOTE
50 75 100 150 200	1 A	1 A	Powered by Control Board
299	10 A	10 A	Powered by installed 10 Amp relay

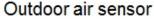
If CH or DHW pump current is more than the maximum allowable current draw install proper field sourced relays as shown in figure 8-3.

120 VAC

Typical Cast Iron Wiring

To Boiler T-T

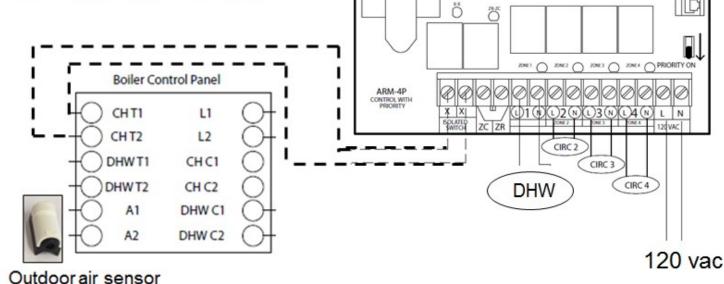

T-STAT


T-STAT

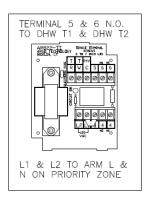
DATA PORT

If done with the VLT It will be

INCORRECT - WHY?

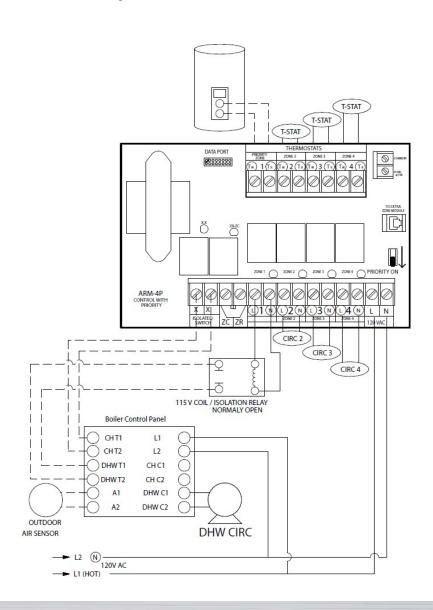

T-STAT

If done with the VLT It will be

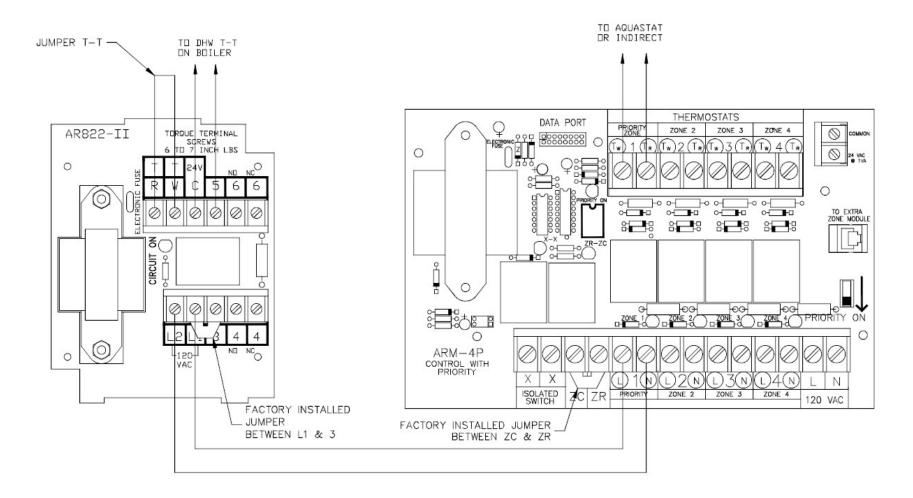

INCORRECT - WHY?

HINT:

Installed in December and it worked fine until this spring



Argo AR822II can be used as isolation relay.


CORRECT

Using AR822 with ARM Control

AR822

ARGO ARM-4P

System Wiring **Zone Valves**

T-STAT SUPERIOR TYPE ZONE VALVE 88 STATUS
PRICERITY ON
PRIMARY PUMP
PRICERITY PUMP ZONE VALVE/PUNP X-X CONTACT PREDRETY ZR-ZC IPN-2 OPTION SVITCH **ARGO**
 COOR
 <th **月月月**日 【 2 3 4 wire jumper between THE CHCULATTE and 4 when using zone values without on end switch. CH CHECKLATIN 1 2 3 4 4 NIRE ZINE

HEATER ADVASTAT

End Switch of DHW Zone Valve acts as **DHW Signal**

AZ-4CP

Wiring Multiple Boilers

Multiple Boiler System

ARGUS [™] control on first boiler will act as the master control. Requires a Multiple Boiler Install Kit p/n 550002186

No need for expensive MBS control

Wiring

Daisy chain wiring from the master to additional boilers with low voltage wiring from the ARGUS link terminals (2-conductor low voltage wire)

Multiple Boiler Piping

FIGURE 5-8A Multiple Boiler Two Pipe Zoned System With Zone Valves - (See Multiple Boiler Guide) Pump CH/System 12"/305mm Maximum Separation Pump Size common piping System per maximum heat Temperature capacity of entire Sensor length to 5' (1.6m) All internal primary loop ball valves closed Up to 16 boilers 3/8"/10mm Open End

Venting/Combustion Air

Combustion Air and Vent Pipe Equivalent Length

2" Pipe		3" Pipe			4" Pipe	
Model	050	075/100	075/100	150/200	299	299
Min.	6 ft. (1.8 m)	6 ft. (1.8 m)	6 ft. (1.8 m)	6 ft. (1.8 m)	6 ft. (1.8 m)	6 ft. (1.8 m)
Max.	100 ft. (30.5 m)	50 ft. (15.2 m)	100 ft. (30.5 m)	100 ft. (30.5 m)	25 ft. (7.7 m)	100 ft. (30.5 m)

1 - 90° elbow = 5 ft. (1.6 m)

1 - 45° elbow = 3.5 ft. (1.1 m)

1 - 2" x 3" adapter = 0 ft. (0 m)

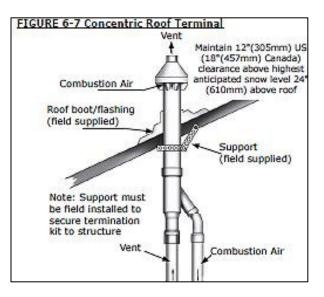
Note: Concentric Vent Kit = 5 ft. (1.6 m) equivalent length

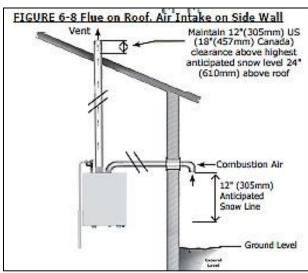
i.e.: Boiler can be installed on outside wall and vented with 1 - 90° elbow and 1 ft. (0.30m) of vent pipe.

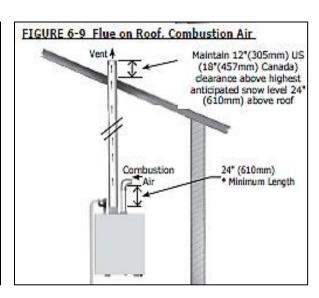
Venting / Combustion Air

- Venting to ANSI 223.1 / NFPA 54 standards
- Material PVC / CPVC / Polypropylene, refer to IOM for additional approved vent materials and pipe schedules
- No cellular (foam core) pipe
- Utilize proper cleaner and glue
- Termination two (2) pipe or concentric venting system

Venting/Combustion Air


- PVC
- CPVC
- ABS
- Polypropylene


Table 4 – Combustion air and vent pipe fittings must conform with the following:			
Item	Material	Standards	
Vent Pipe and Fittings	PVC schedule 40	ANSI/ASTM D1785	
	PVC – DWV	ANSI/ASTM D2665	
	CPVC schedule 40	ANSI/ASTM D1784/F441	
	SDR-21 & SDR-26 PVC	ANSI/ASTM D2241	
	ABS-DWV	ANSI/ASTM D2661	
	Schedule 40ABS	ANSI/ASTM F627	
	PP (Polypropylene) Pipe and Components	UL 1738 ULC S636-08	
Pipe Cement / Primer	PVC	ANSI/ASTM D2564	
	CPVC	ANSI/ASTM F493	
	Schedule 40 ABS	ANSI/ASTM D2235	


- IPEX is approved vent manufacturer in Canada listed to ULC-S636.
- IPEX System 636 Cements and Primers are approved in Canada listed to ULC-S636

Use of cellular core PVC (ASTM F891), cellular core CPVC, or Radel®, (Polyphenolsulfone) in venting systems shall be prohibited.

Roof w/ Concentric combustion air


Roof w/ sidewall combustion air

Roof w/ inside combustion air

Sidewall vent w/ combustion air on roof

Sidewall vent w/ inside combustion air

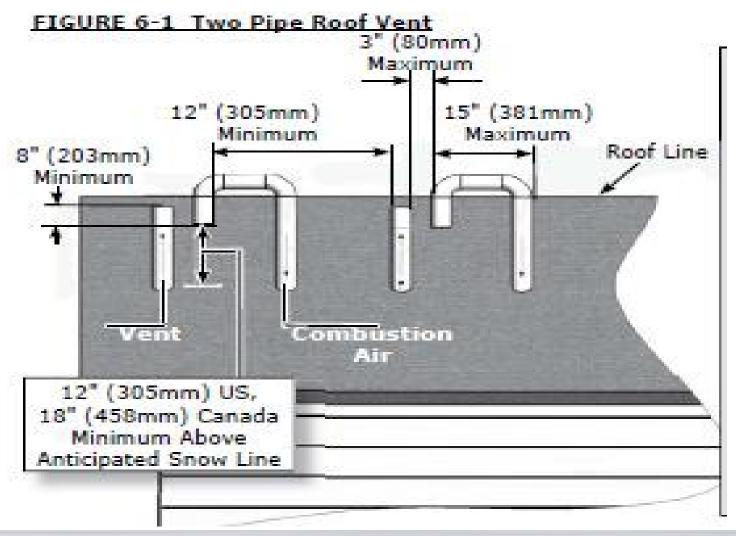


FIGURE 6-2 Two Pipe Side Wall Vent

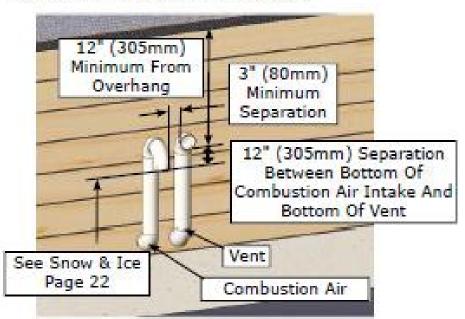
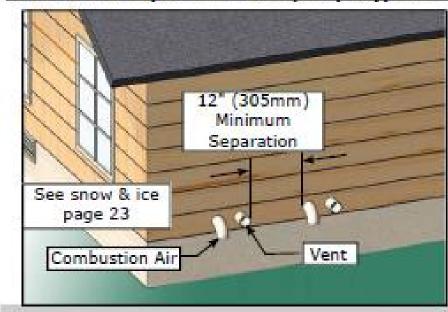



FIGURE 6-3 Two Pipe Side Wall Vent (Multiple Appliances.

Common Venting

Note: Flow Check Valve accessory

required – kit number 240010299

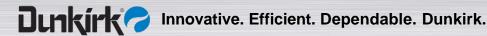
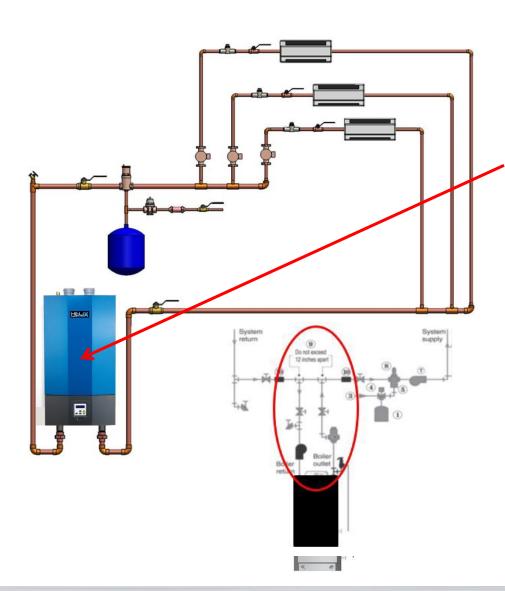

FIGURE 6-17 Mulitple Boilers With Common Venting Pipe Combustion 12" (305mm) Anticipated **Ground Level**

Table 9 - Common Venting Pine Diameters


Table 9 – Common Venting Pipe Diameters			
Total Firing Rate	Minimum Diameter of Common vent pipes if L <50 ft (16m)	Minimum Diameter of Common vent pipes if L >50 ft (16m)	
400	4" (101mm)	5"(127mm)	
600	F"(127mm)	6"(4F2mm)	
800	5"(127mm)	6"(152mm)	
1000			
1200	6"(152mm)	7"(177mm)	
1400			
1600			
1800	7"(177mm)	8"(203mm)	
2000			

Venting / Combustion Air

- Side wall or roof venting systems allowed
- 1' from or below doors, windows / gravity inlets
 - Direct vent on common wall <u>only</u>
- 3' above and 10' from any forced air inlet
- Above grade (12")
- 3' from a inside "L" corner
- 4' horizontally from, no case above or below electrical, gas meter / regulators or relief equipment
- Cannot be vented under a deck or porch
- Avoid laundry vents

Built-In Features

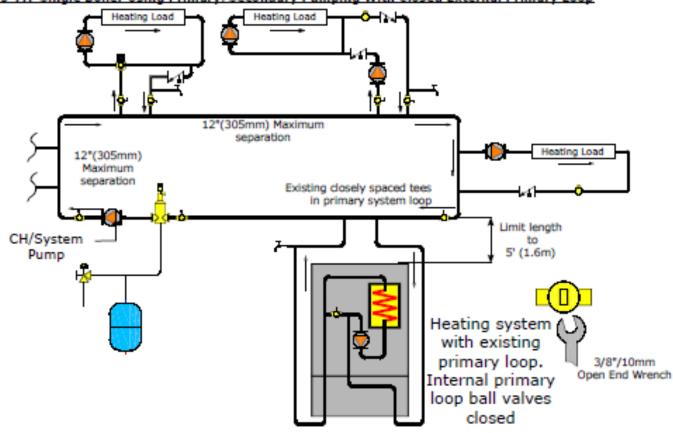
Primary/Secondary Piping and Pump

Factory installed inside the boiler.

The internal pump provides the correct amount of water flow through the heat exchanger.

The pressure drop across the boiler's supply and return line is negligible - the boiler is not adding resistance to the system piping.

Built-In Primary/Secondary Piping


FIGURE 5-6 Single Boiler Two-Pipe Zoned System With Zone Pumps DHW-Pump Heat exchanger ball valve open (as shipped) Pump

Boiler is shipped with the heat exchanger ball valve open. Connect to existing systems without extensive re-piping or the need to purchase a high head pump.

External Primary/Secondary Piping

FIGURE 5-7A Single Boiler Using Primary/Secondary Pumping With Closed External Primary Loop

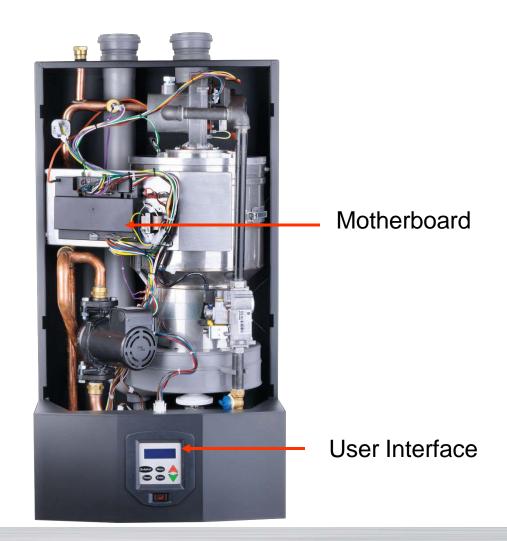

Multiple Boiler Piping

FIGURE 5-8A Multiple Boiler Two Pipe Zoned System With Zone Valves - (See Multiple Boiler Guide)

Control Package ARGUS™ Vision

- ARGUS™
- Display / mother board
- Fuse protected

Control Package ARGUS™ Vision

- Key Features:
 - User Interface with full text readout of error codes + diagnostics.
 - Integrated Multiple boiler control w/ simplified physical connection.

Control Display

```
Standby: No Demand
   \mathbf{G}
Central Heating
     6 5 %
Domestic Hot Water
     9 5 %
```

Boiler operates in standby mode until demand for Central Heat (CH) or Domestic Hot Water (DHW) is detected.

Control Display

Boiler Status Indicator

F = Flame Detected

P = Boiler Pump On

B = Combustion Air Blower

S = Spark Ignition On

G = Gas Valve Open

D = DHW Pump On

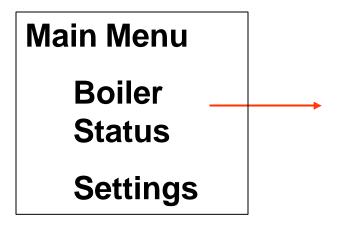
Service Reminder Indicator

Boiler in Standby Mode

Boiler Supply Water

Temperature Indicator

Control Program


ARGUS™ Control

Key	Description
RESET	Reset Control / System
MENU	Enter / Exit user menu
ENTER	Select Menu item
	Confirm new parameter value
	Scroll up to next menu item
A	Go to next screen
PLUS	Increase value
	Scroll down to next menu item
▼	Go to previous screen
MINUS	Decrease value

EASY TO PROGRAM EASY TO UNDERSTAND

TWO MENU'S: MAIN MENU & INSTALLERS MENU

Key	Description
RESET	Reset Control / System
MENU	Enter / Exit user menu
ENTER	Select Menu item
	Confirm new parameter value
	Scroll up to next menu item
A	Go to next screen
PLUS	Increase value
	Scroll down to next menu item
▼	Go to previous screen
MINUS	Decrease value

Boiler Status

Supply Temperature Setpoint

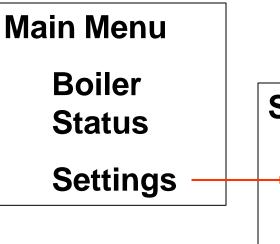
Supply Temperature

Return Temperature

DHW Status

System (Sensor) N.C. (Not Connected)

Flue Temperature


Outside Air Temperature

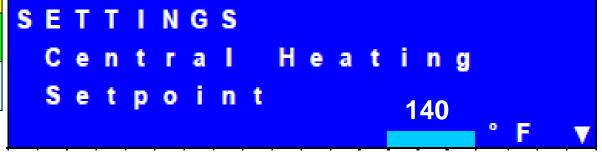
Boiler Pump

CH/System Pump

DHW Pump

No Outdoor Sensor <u>OR</u>

Outdoor Sensor


Settings
CH Setpoint
DHW Setpoint
Change Units
°F/°C

Settings
OD Reset
(Not Adjustable)
DHW Setpoint
Change Units

°F/°C

Key	Description
RESET	Reset Control / System
MENU	Enter / Exit user menu
ENTER	Select Menu item
	Confirm new parameter value
	Scroll up to next menu item
A	Go to next screen
PLUS	Increase value
	Scroll down to next menu item
▼	Go to previous screen
MINUS	Decrease value

Sample Screen Display

(Menu & Enter Buttons – 4 seconds)

Installer Menu

Boiler Status

Boiler Config

CH Settings

DHW Settings

Cascade

Settings

System Test

Key	Description
RESET	Reset Control / System
MENU	Enter / Exit user menu
ENTER	Select Menu item
	Confirm new parameter value
	Scroll up to next menu item
A	Go to next screen
PLUS	Increase value
	Scroll down to next menu item
▼	Go to previous screen
MINUS	Decrease value

Boiler Status

Fan Speed – Actual, Low, IGN, High

Flame

Signal

Failures

Ignition Attempts
Successful

Successiu

Failed

Boiler Run Time

CH – hours

DHW – hours

Blocking Errors (non-volatile memory for 16)

Locking Errors (non-volatile memory for 16)

(Menu & Enter Buttons – 4 seconds)

Installer Menu

Boiler Status

Boiler Config

CH Settings

DHW Settings

Cascade Settings

System Test

Key	Description
RESET	Reset Control / System
MENU	Enter / Exit user menu
ENTER	Select Menu item
	Confirm new parameter value
	Scroll up to next menu item
A	Go to next screen
PLUS	Increase value
	Scroll down to next menu item
▼	Go to previous screen
MINUS	Decrease value

Boiler Config

Address Selection

LWCO - enable/disable

Pump Mode

CH or Ch & DHW - 0

System Pump - 4

Service Reminder
On/Off
Duration

OUTDOOR TEMP. (°C/°F)

(Menu & Enter Buttons – 4 seconds)

Boiler Status

Boiler Config

CH Settings

DHW Settings

Cascade

Settings

System Test

	_
Key	Description
RESET	Reset Control / System
MENU	Enter / Exit user menu
ENTER	Select Menu item
	Confirm new parameter value
	Scroll up to next menu item
A	Go to next screen
PLUS	Increase value
	Scroll down to next menu item
▼	Go to previous screen
MINUS	Decrease value

CH Settings

Cirocilligs

CH Mode

0- CH with Tstat

1- CH: Tstat & Outdoor Sensor

2- CH: No Tstat, Full setback by OAS

60

3- CH: Permanent Demand

Warm Weather Shutdown

200

71 160 60 140

120

Reset Curve Design – High end

Reset Curve Design – Low end

Reset Curve Min/Max Temperatures

Boost Function

Max Power

(Menu & Enter Buttons – 4 seconds)

Boiler Status

Boiler Config

CH Settings

DHW Settings

Cascade

Settings

System Test

DHW	Set	ting	gs
_	1 1\A <i>1</i>	N.A	

DHW Mode

DHW Priority

Key	Description	
RESET	Reset Control / System	
MENU	Enter / Exit user menu	
ENTER	Select Menu item	
	Confirm new parameter value	
	Scroll up to next menu item	
A	Go to next screen	
PLUS	Increase value	
	Scroll down to next menu item	
▼	Go to previous screen	
MINUS	Decrease value	

(Menu & Enter Buttons – 4 seconds)

Installer Menu
Boiler Status
Boiler Config
CH Settings
DHW Settings
Cascade
Settings

Key	Description	
RESET	Reset Control / System	
MENU	Enter / Exit user menu	
ENTER	Select Menu item	
	Confirm new parameter value	
	Scroll up to next menu item	
A	Go to next screen	
PLUS	Increase value	
	Scroll down to next menu item	
▼	Go to previous screen	
MINUS	Decrease value	

System Test

Cascade Settings

Emergency Setpoint

Start Delay Time

Stop Delay Time

Start Boiler Differential

Stop Boiler Differential

Calculated Setpoint: Max Offset Up

Calculated Setpoint: Max Offset

Down

Next Boiler Start Rate

Next Boiler Stop Rate

Rotation Interval

Boilers for DHW

Start Modulation Delay Factor

System Test – Post Pump Time

(Menu & Enter Buttons – 4 seconds)

Installer Menu

Boiler Status

Boiler Config

CH Settings

DHW Settings

Cascade

Settings

System Test

System	Test	Setti	ings

System test power: (Low, IGN, High)

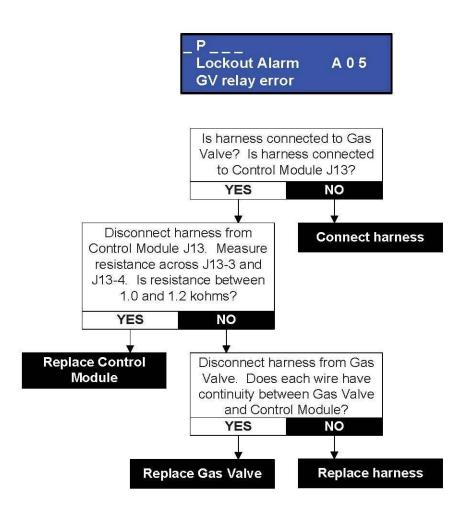
Boiler Pump (On / Off)

CH Pump (On / Off)

DHW Pump (On / Off)

Key	Description		
RESET	Reset Control / System		
MENU	Enter / Exit user menu		
ENTER	Select Menu item		
	Confirm new parameter value		
	Scroll up to next menu item		
A	Go to next screen		
PLUS	Increase value		
	Scroll down to next menu item		
▼	Go to previous screen		
MINUS	Decrease value		

Error Code Troubleshooting



Error Code Troubleshooting

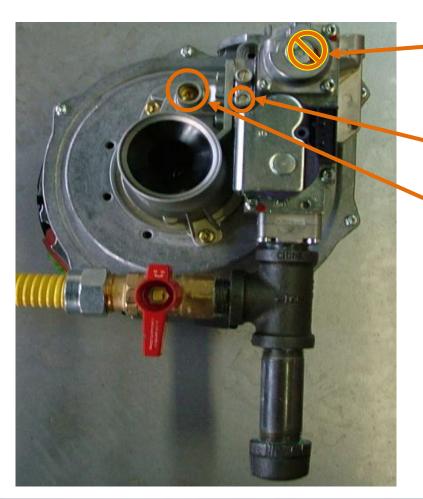
Current System Status Lockout Alarm A 0 0 **Blocking Error** Go to Page 44 Go to Page 40 E 35 **Blocking Too Long Error False Flame Detect** Go to Page 45 **Lockout Alarm** A 0 1 Go to Page 41 **Blocking Error** E 36 **Low Water Cutoff Ignit Error Lockout Alarm** A 0 5 Go to Page 40 **Blocking Error** E40 Go to Page 46 **GV Relay Error** Return Temp **Error Description Error Code #** Page # in IOM

Error Code Troubleshooting

- Flow chart design
- Easy to follow and understand
- Step by step procedure
- Error code listed in blue box

Combustion Requirements

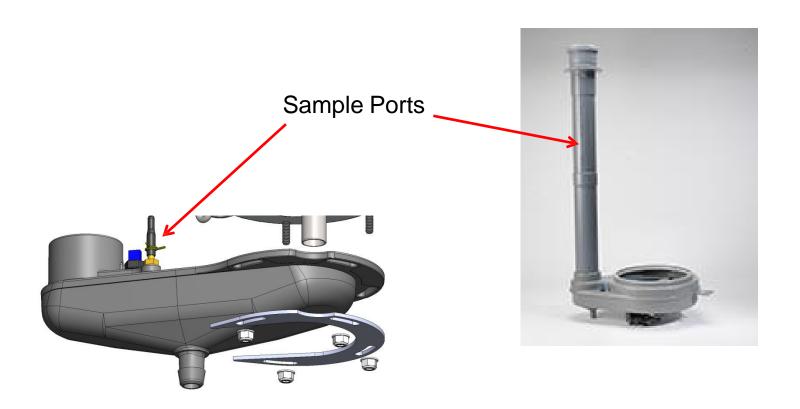
Combustion


- Combustion and proper installation set up required for all high efficiency models
- Combustion Analyzer Properly check CO² level of exhaust
- Gas Meter U-tube manometer or gauge set to check inlet gas pressure
- To change gas inlet pressure adjust at system regulator <u>NOT</u> THE GAS VALVE REGULATOR
- Sampling port located on Flue Collector

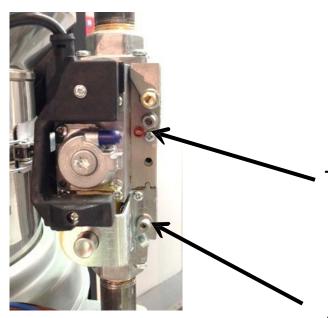
No need to drill sample port in flue pipe!!

Combustion Gas Valve on 50-200 Models

0	C	02	00
Gas	Min	Max	СО
Natural Gas	9.0	9.5	<200ppm
Propane	10.0	11.0	<200ppm


Do not adjust the gas regulator on the gas valve

Gas inlet pressure tap


Natural: 3" – 13.5" w.c. LP: 5" – 13.5" w.c.

- Throttle screw to adjust the air / gas mixture on the venturi assembly
- All gas pressure changes are done at the utility regulator external of the equipment

Combustion: Built-in Sample Ports

Combustion Gas Valve on 299 Model

Gas	CO2		СО	
	Min	Max		
Natural Gas	9.0	9.5	<200ppm	
Propane	10.0	11.0	<200ppm	

Throttle Screw (red)

Gas Inlet Pressure Tap

Maintenance/Cleaning

Maintenance/Cleaning

- Turn off gas and electrical
- Remove blower / burner assembly and examine flue passageways
- Remove igniter and sensor off top of heat exchanger
- Burner may be cleaned by inserting an air hose into blower opening of casting and blowing air thru heat exchanger side

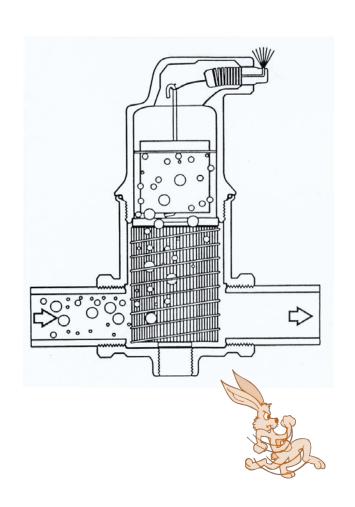
Maintenance/Cleaning

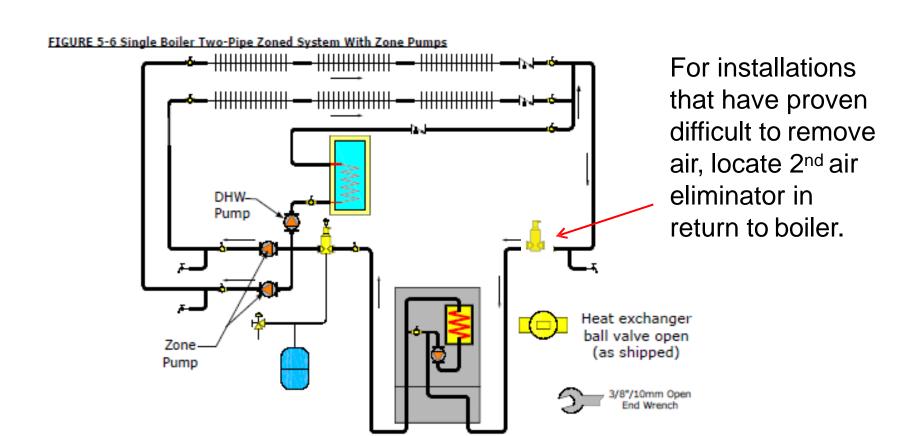
- Clean heat exchanger with nylon brush if required
- Any remaining sediment can be removed with a shop vacuum snorkel
- Re-install refractory and burner / gas valve
- •Visually inspect condensate trap re-fill trap (If required)

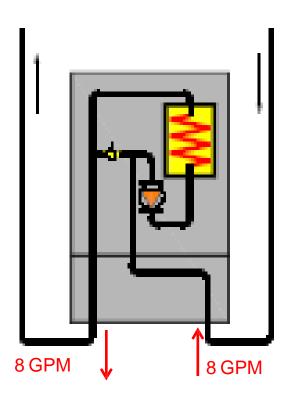
Critical Installation Points

- Air in the system affects Low Mass Boilers differently than cast iron boilers
- Heat Exchanger Water Volume is much lower
- Air removal methods different
- Water Flow rates are important
- •How does Antifreeze affect the System?
- Clean Water

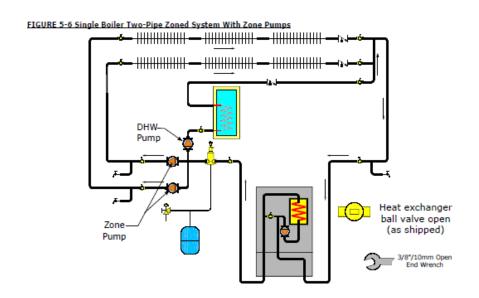
- •Cast Iron Boilers are more tolerant of system air issues.
- Gravity works with us


Cast Iron Air Scoop


- Based on venturi principal;
 accelerated flow yields reduced
 pressure, causing dissolved gases
 to separate
- •Slow Process Less Effective
- Proper location Critical for air scoop to remove air

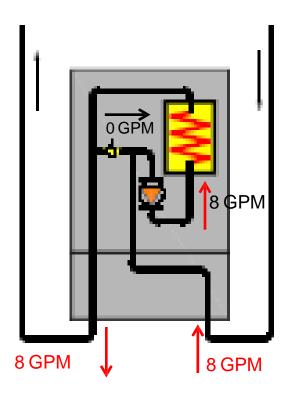

Micro-Bubble Separator

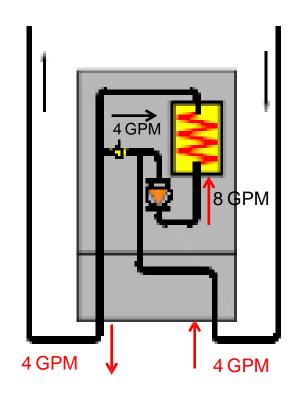
- Based on the principal that reduced velocity plus multiple impact sites allow air bubbles to separate easily
- •Faster process, much more effective
- Location Not Critical for Separator to function


VLT Power Purge

- •Prior to Firing, <u>close</u> Ball Valve to help move ALL water out of Boiler to purge air.
- •Open Ball Valve before Firing

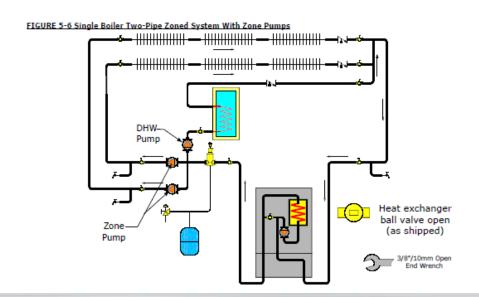
Water Flow


- Low System Flow Rates will cause Boiler to heat quickly
- Cycles frequently on High Limit-Less Efficient
- Harder to get air out of boiler



Water Flow

Primary & Secondary Flow Balanced



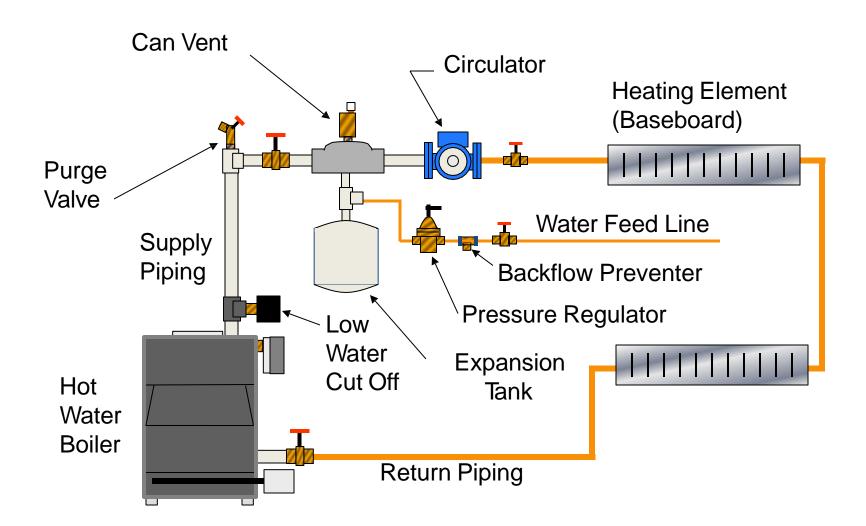
Reduced Flow in Secondary (One Zone Calling)

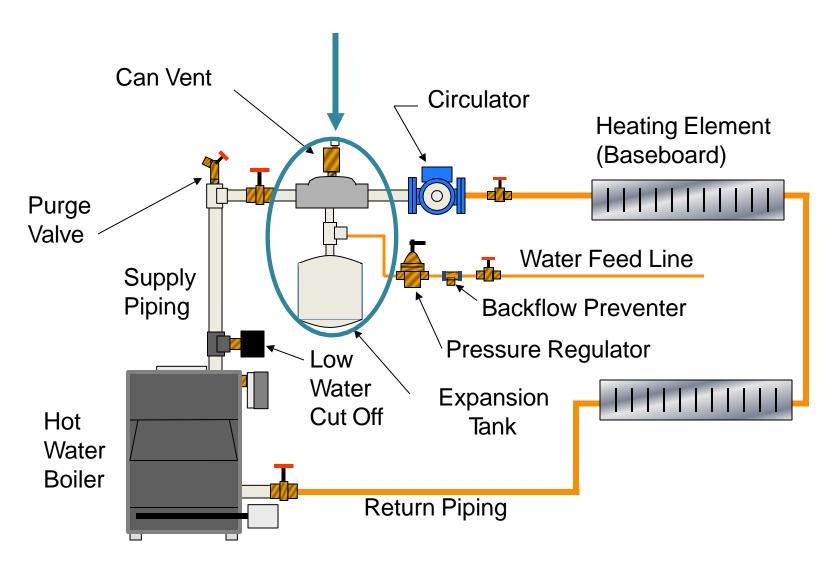
Water Source

- •Treated (Softened) water can reduce circulator capacity by 10-15%!!
- •If reduced flow rate is causing noise issues a higher head pump may resolve the problem.

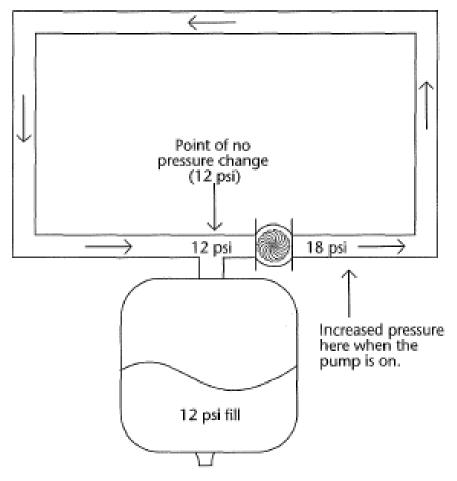
Flush & Clean

- Water quality can affect system performance
- Dirty brackish water can lower boiling point
- Also makes air removal more difficult





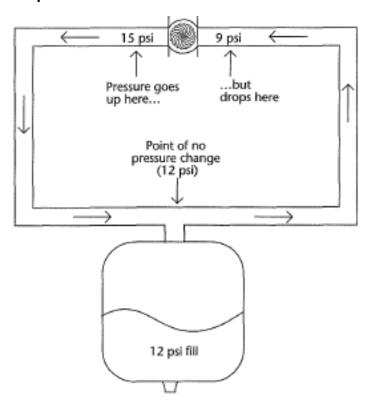
 The Point of no Pressure Change is the one place in the system where the pump cannot affect the overall system pressure.


How can pump placement affect system performance?

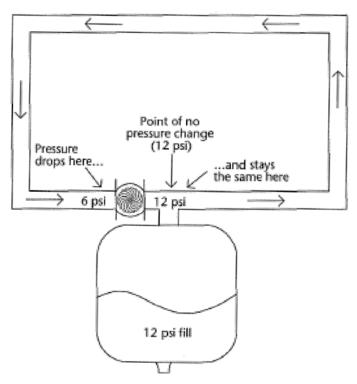
Supply vs. Return side Pumping

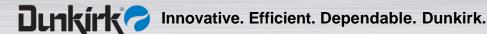
A typical residential circulator will develop about 6psi. In this diagram, all of the pump's differential pressure

is on the outlet side.


6 psi differential – water flows

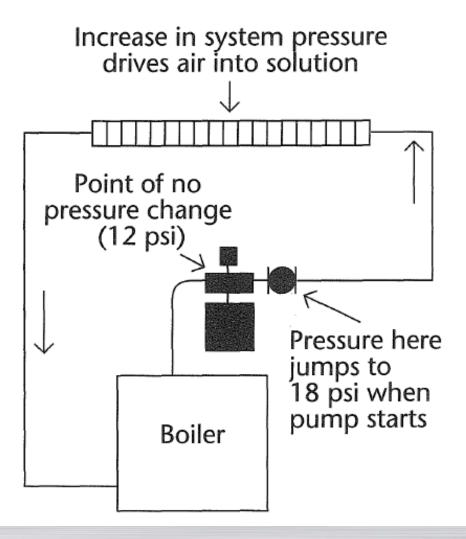
- Because the point of no pressure change (the place that must remain at the 12 psi static fill pressure) is now halfway around the system, the pump is showing half of its pressure differential as an increase and the other half as a decrease. You now have a drop of 3 psi at its discharge.
- Water flows exactly as it did in the last example because there's still a 6 psi pressure differential across the pump (15 psi 9 psi = 6 psi differential).

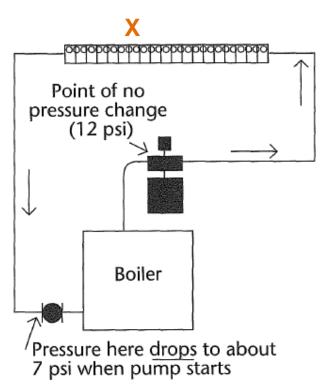

6 psi differential – water flows


Because the outlet of the pump is right at the point of no pressure change, ALL of the pumps difference is on the inlet side. We still have a 6 psi difference and water flows as before.

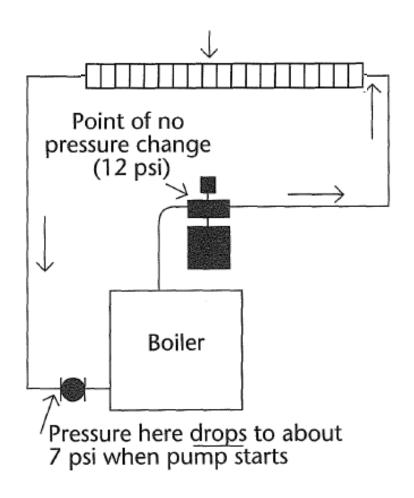
6 psi differential – water flows

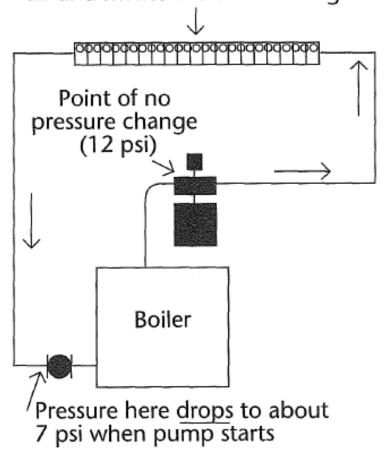
The Water flowed in all 3 examples


So why does pump placement matter?


Why do the bubbles explode out of the soda?

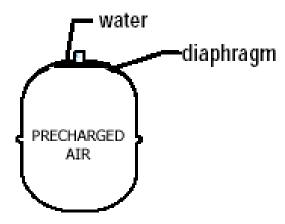
Built-up gas pops the cap a bit





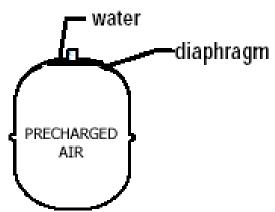
With pump located on return what happens to the pressure at "X" when the pump starts?

Drop in system pressure releases dissolved air and makes the bubbles larger!



Increase the Boiling Point

- •If existing system is contributing to air removal difficulties raise the boiling point.
- •Increase system pressure to 20 psi.
- •Remember to pump Expansion tank!
- •If higher pressure needed change Boiler relief to 50 psi and increase system pressure further.
- •Remember to pump Expansion tank!


Normal Tank Operation

System Off

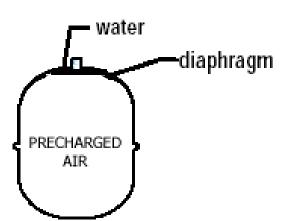
System Pressure=12

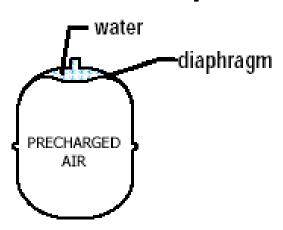
Normal Tank Operation

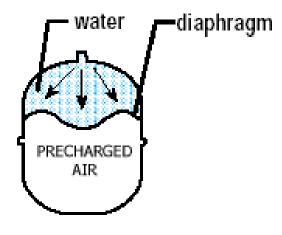
water—diaphragm

PRECHARGED
AIR

System Off


System Pressure=12


Tank Pressure=12


System On

System Pressure=14

Normal Tank Operation

System Off

System On

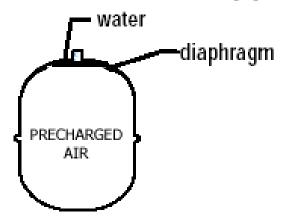
System On

System

System

System

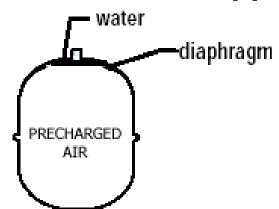
Pressure=12

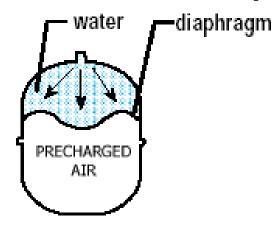

Pressure=14

Pressure=18

Tank Pressure=12

Tank Pressure=14


What happens if I don't Pump Up my Tank?



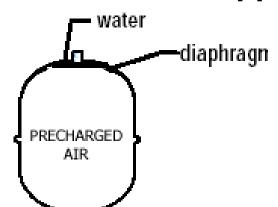
System Off

System Pressure=12

What happens if I don't Pump Up my Tank?

System Off

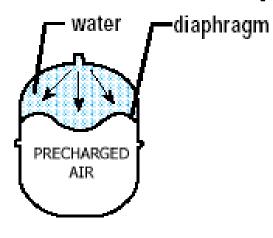
System Pressure=12


Tank Pressure=12

System Off

System Pressure Increased to 20

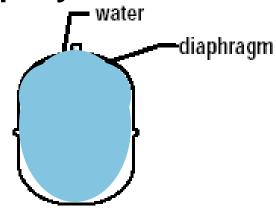
(Tank Fills until air is Compressed to match)


What happens if I don't Pump Up my Tank?

System Off

System Pressure=12

Tank Pressure=12



System Off

System Pressure=20

(Tank Fills until air is Compressed to match)

Tank Pressure=20

System On- Pressure Increases due to Expansion

System Pressure=

Tank =FULL!

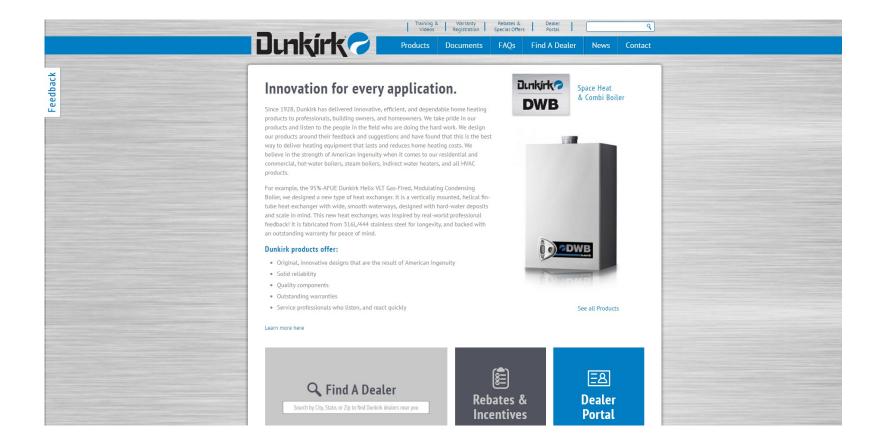
Antifreeze

- Antifreeze is more viscous. Pump capacity reduced.
- •Thermal transfer capability reduced 17% at 50-50 strength.
- Only use what's necessary.
- •Use tester to determine proper level.

Dunkirk VLT Warranty

- 15 Year ECR Limited Warranty
- One Year all other parts

Questions



Technical Support

1-800-253-7900

www.dunkirk.com

Thank You!